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In practice, velocity calculations for droplets of known size or 
determination of the energy consumed in the acceleration or breakup 
of droplets in a turbulent gas flow involves a number of assumptions 
[1-3]. It is usual to neglect the liquid structure of the droplet, its 
deformation, its deviation of shape from the spherical, and the pres- 
sure in the flow of not one, but many droplets. 

These assumptions may be justified in the presence of a high degree 
of atomization for the liquid, when the fine droplets behave like rigid 
spherical particles, and thus to employ the drag coefficient C x for a 
sphere. However, even when it is known that the droplet is deformed 
in interaction processes with the gas flow it is necessary in theoretical 
calculations to use the drag coefficient for a rigid sphere [4, 6]. 

There is no united opinion about the variation of the drag coeffi- 
cient for a deforming liquid droplet as it breaks up in a turbulent gas 
flow [4-6]. 

Thus, Prandtl [6] considers that the coefficient has a value close 
to 0.5 and that its subsequent deformation in the flow is accompanied 
by an increase in that value. 

In investigating the breakup of droplets ranging in size from 2.0 to 
3.9 mm and from 0.5 to 5.0 mm in a turbulent gas flow Volynskii [4] 
and Lane [5] took Cx as constant and equal to 0.44, i .e . ,  correspond- 
ing to the region of the self-similar regime for flow over a sphere in 

5 the range of Reynolds numbers R = 1 �9 10z-3 �9 10 . Lane, in partmular, 
notes that in the course of breakup there is a transition from the 
spherical to the lenticular shape with a reduction in the aerodynamic 
drag coefficient. 

However, as our experiments have shown, the assumption of such a 
value for the drag coefficient of a liquid droplet from 2 to 5 mm in 
diameter is not justified, since it corresponds to an uureal situation. 

We will consider a liquid droplet transported vertically downward 
by an accelerating gas'flow. As the positive direction we take the 
direction of the velocity vectors of the flow and droplet. 

The equilibrium condition is expressed as 

dFp  = dF  1 + F~ , (1) 

where dF r = ma, a = dWk/d~, dFl = dF c = 1/8CxTrdkpU 2, and F 2 = rag. 
Here, dF r is the resultant force by which a droplet with mass m 

acquires an acceleration a on a certain interval, dF x is the force 
exerted on the droplet by the flow, equal in magnitude to the drag, 
and F2 is the force of gravity. 

We write Eq. (1) in the complete form: 

m dWl: /d '~  = X/sCx~dkpU2 + rag .  (2) 

Equation (2) is difficult to solve for C x owing to the lack of data 
on the variation of absolute droplet velocity Wk, the area of maximum 
cross section (projection of the body on a plane perpendicular to the 
direction of motion), and relative velocity U during the process of 
acceleration, deformation, and breakup. 

Below we present conditions and results of an experimental deter- 
mination of drag coefficient for water droplets 3.34, 3.0, 2.45-2.66, 
and 2.0 mm in diameter in a turbulent accelerating air flow. 

By means of high-speed motion-picture photography on an interval 
10 mm long we recorded the state of droplets of the above-mentioned 
size. The breakup process takes a very short time (0.01 see) and, for a 
droplet of a particular size, occurs at a perfectly definite "critical" 
gas velocity. 

To obtain a smoother picture of droplet deformation before break- 
up, the camera was focused on the convergent part of a plexiglas 
Venturi tube of rectangular cross section. To obtain a large volume of 
information about droplet deformation we took a series of photographs 
along the length of the convergent part of the Venturi tube at each 

Fig. 1 

investigated gas velocity in the throat (10, 15, 20, 25, 30, and 36 
m/sec). 

Thus, a particular, identical, degree of deformation for droplets 
of given size developed on different intervals of the convergent zone, 
and the greater the gas velocity in the throat, the sooner the given 
degree of deformation was attained. 

In analyzing the experimental data we assumed that the degree of 
deformation for droplets of given size is a function of relative velocity 
only. 

In [7] it was established from pictures of a deforming droplet taken 
in mutually perpendicular planes with two synchronized high-speed 
motion-picrure cameras that the planar dimensions of the droplets 
differ only slightly from a circle. We assumed, therefore, that the 
theoretical shape of the deformed droplet was a fiat ellipsoid of revolu- 
tion b < a = c about the x-axis (Fig. 1). 

Actually, in the initial stage of deformation, called the "pulsating" 
stage in [7], the front of the droplet has a somewhat greater radius of 
curvature than the tail. Unstable equilibrium between dynamic pres- 
sure acting on the droplet and surface tension leads to a constant oscil- 
latinn of the droplet surface about the shape of a rotational ellipsoid of 
revolution. In the second stage of "regular" deformation of the droplet, 
when correspondence between the actual and theoretical shapes is 
already complete, further flattening takes place with a gradual reduc- 
tion of the semiaxis ratio k = b / a .  

The volume of a rotational ellipsoid of revolution about the x-axis 
V = 4/3~raabc. Considering that a ~ c and b / a  = k, we obtain V = 
= 4/31r ask. 

From the comtant-volume condition 1/6~rd z = 4/3~raZk. Hence 
d = 2ak  1/a and a = l  b. ~d3/k. . 

We calculated the semiaxes and b for each droplet size. Ratio 
k was varied from 0.99 (almost corresponding to a sphere) to 0.1 with 
an interval of 0.05 and from 0.1 to 0.01 with an interval of 0.0J.. 

Macrophotography of the deformed droplets made it possible to 
measure with sufficient accuracy (0.08 ram) the major and minor axes 
of the ellipse. A comparison of the measured semiaxis dimensions with 
the calculated data made it possible to determine the original diameter 
of the deformed droplet. 

Apart from the dimensions of the deformed droplet, we simulta- 
neousIy determined the following quantities: degree of deformation k, 
mean droplet velocity W k on an interval of 10 ram, time t taken by 
the droplet to traverse that interval, and the mean gas flow velocity. 

For calculation and graphical purposes we took weighted means of 
many values obtained for different flow conditions in the Venturi tube, 
but standardized according to a single principle--identical degree of 
deformation of the droplet. In general, the deviation from the means 
of the limiting values for all the quantities measured did not exceed 
:~i,5%. 

Figure 2 presents the results of an analysis for the experimental 
data in a plot of total drag coefficient (Cx) versus Reynolds number (R). 
In determining R we took the dimensions of the deformed droplet, 
i .e . ,  R was a function not only of relative velocity U but also of the 
characteristic linear dimension of the droplet. 
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Fig. 2 

The variation of C x with R can be divided into two phases; in the 
first phase, corresponding to the stage of "pulsating" acceleration, 

there is a quite sharp fall in C x as R increases. Thus, for d = 3.8 mm 

the coefficient fell to C x = 0.006-0.046 at values of R from 2800 to 

3000. A tendency for C x to fall is also observed with droplets from 

3.0 to 2.0 mm in diameter in a narrow range of R from 2000 to 2600 ; 

unfortunately, the minimum values could not be established. 

The decrease in C x can be explained as follows. Whereas a sphere 
is a blunt body for which pressure drag is important even at low speeds, 

for a liquid droplet during the first stage the action of the dynamic gas 
pressure continuously decreases owing to liquid circulation in the 

droplet. 
The absence of slip at the phase interface leads to the gradual 

invoIvement of an ever greater quantity of the droplet liquid in the 

circulation, and, as the flow velocity increases in the convergent 
part of the Venturi tube, the circulation intensity becomes greater 

and greater. Owing to the circulation of the liquid, the actual in- 

crease in the relat ive velocity between the gas flow and the droplet 

is small; this also explains, in particular, the fact that for flow over 

a rigid sphere at R from 0.1 to 100 values of C x are the same as for 
flow over a droplet at Rfrom 500 to 2600. 

In this stage flow over the droplet may also be unseparated; how- 

ever, in principle the action of the gas flow on the droplet remains 

dynamic at these gas velocities; therefore, to calculate  C x we took a 

quadratic dependence of drag force on velocity. 

As the diameter of the droplet decreases, owing to the increase in 

the Laplace pressure, which is inverseIy proportional to the droplet 

radius, Cx approaches ever more closely to the characteristic value 

for flow over a rigid sphere at the same R-values. Moreover, this is 

part ial ly confirmed by the fall  in Cx-values obtained for d = 2.0 mm 
(see Fig. 2). 

The increase of absolute velocity for the droplet with t ime  is shown 
in Fig. 3. The greater the droplet diameter, the sharper the transition 
between the two stages of deformation. For d = 3.5 ram, at a droplet 

veloci ty from 2.4 to 2.6 m/see,  and at a re la t ive velocity 8,5 m/see,  

there is a characteristic "plateau," whose presence is attributable to 
at tainment  of a maximum liquid circulation in the droplet, when the 

dynamic pressure effect is minimized.  Thus, at very low values of the 
drag coefficient the resultant force acting on a droplet 3.5 mm in 
diameter is equal to 0.• 10"3 N, i . e . ,  almost equal to the force of 
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Fig. 3 

gravity (F z = 0.190 - i0 -a N), while for droplets from 3.0 [o 2.0 mm in 

diameter  is two-four times greater than the force of gravity. Corre- 
spondingly, for droplets from 3.0 to 2.8 mm in diameter the "plateau" 

is less apparent, while at d = 2.0 mm it almost disappears. 

In Fig. 4 end of the first stage and at tainment of maximum circula-  

tion in the droplet correspond to a sudden increase in the degree of 

deformation (especially for droplets from 3.5 to 2.6 in diameter) for 

only a smali change in relat ive velocity. 
This suggests that an important role in relation to droplet shape is 

played, apart from dynamic pressure, by circulation in the dropIet. 

Obviously, maximum circulation leads to the spherical shape losing 

its stability and going over into an eliipsoid of revohtion.  Partial 

proof of this is the strictly symmetrical  shape of the ellipsoid with a 

degree of deformation k = 0.6, which was the same for al l  droplets on 

transition to the second stage of "regular" deformation. Action of the 

dynamic pressure alone would not ensure such strictly symmetrical  

deformation. As the droplet diameter decreases, greater reIative 

velocity is required to attain the same degree of deformation and for 

droplets from 3.5 to 2.0 mm in diameter it is equal to 8.6-12 m/see.  

The change in the shape of the droplet at the beginning of the 

second stage of regular deformation leads to an increase in C x in the 
same narrow range of Reynolds numbers R = 2200-8000 (see Fig. 2), 

which is, obviousIy, a consequence of sharp reduction of cireuIation 

inside the droplet and a transition to separated flow. 

Further change in droplet shape from el!ipseidal (k = 0.6) to disk- 

shaped continues to k = 0.1-0.9,  which corresponds to a disk with a 
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diameter approximately equal to twice the diameter of the original 
droptet. Taylor [8] has called this the critical state, when even slight 
variations (pulsations) of the gas flow lead the disk to break up into 
smaller droplets. In this phase the drag coefficient falls steadily a s 
Reynolds number increases in the range R = 3.10 ~ - 1.104 (see Fig. 2) 
and only in the critical stage reaches values C x = 0.5-0.8. 

On average, however, the drag coefficient in this stage is two to 
six times greater than the coefficient for a rigid sphere (C x = 0.44) 
and tends more toward the value of the dynamic coefficient for a flat 
disk (C x = 1.11 - 1.33 at R = 1.10 s - 3.106 ) [9]. 

Thus, experimental results lead to the following conclusions: 
1. The liquid nature of the droplet and droplet deformation lead to 

important deviations of the total drag coefficient C x from the value of 
a rigid spherical body at the same Reynolds numbers. 

2. The value C x = 0.44 (drag coefficient of a rigid sphere in the 
self-similar regime) used for calculating the velocity and breakup 
energy of liquid particles is clearly too low and does not follow from 
the actual interaction pattern. On average, the experimentally estab- 
lished rathe of C x in the breakup stage for droplets from 3.5 to 3.0 mm 
in diameter is 4.8-6 times greater. 

The dependence of drag coefficient on Reynolds number can be 
represented as C x = A/Rn: here, for the "pulsating" stage of deforma- 
tion in the range of R from 800 to 2500 

d = 3.5--3.0 A =  427.108 n = 3 . 1 5  <n )=3 .1  
d = 2.5 A = 108.5.t0 s n = 3.08 ; 

for the "regular" stage of deformation in the range R = 4- 10 a - -  

- 1 -  104 

d = 3 . 5  A = 4 . t O  s ~t = 2.2 <n)=2.15 
d = 3.0 .4 = t.'2.108 n = 2.13 " 

In the experiments a droplet with d = 2.0 mm could not be brought 
to breakup, and the data were obtained in a narrow range of Reynolds 

numbers. It is not possible to give analogous relations for this droplet. 

However, it should be noted that as the droplet diameter decreases 
there is a tendency toward equalization of the drag coefficient for the 
liquid droplet and that for rigid spherical body at the same Reynolds 
number. 
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